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a b s t r a c t

Kinetic equations containing terms for spatial transport, body forces, and particle–particle
collisions occur in many applications (e.g., rarefied gases, dilute granular gases, fluid-particle
flows). The direct numerical solution of the kinetic equation is usually intractable due to the
large number of independent variables. A useful alternative is to reformulate the problem in
terms of the moments of the velocity distribution function. Closure of the moment equations
is challenging for flows sufficiently far away from the Maxwellian limit. In previous work, a
quadrature-based third-order moment closure was derived for approximating solutions to
the kinetic equation for arbitrary Knudsen number. A key component of quadrature-based
closures is the moment-inversion algorithm used to find the non-negative weights and
velocity abscissas. Here, a robust inversion procedure is proposed for three-component
velocity moments up to ninth order. By reconstructing the velocity distribution function,
the spatial fluxes in the moment equations are treated using a kinetic-based finite-volume
solver. Because the quadrature-based moment method employs the moment transport
equations directly instead of a discretized form of the kinetic equation, the mass, momen-
tum and energy are conserved for arbitrary Knudsen and Mach numbers. The computational
algorithm is tested for the Riemann shock problem and, for increasing Knudsen numbers (i.e.
larger deviations from the Maxwellian limit), the accuracy of the moment closure is shown
to be determined by the discrete representation of the spatial fluxes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The kinetic equation for the velocity distribution function is used in many applications [2,8–10,12,26,28,30,32–
34,50,54,62], and thus there have been many computational methods developed to find approximate solutions. At present,
there are two classes of methods that can be used to find accurate solutions to the kinetic equation: (i) direct solvers that dis-
cretize velocity phase space [2,7,27,49,50] and (ii) Lagrangian methods [4]. However, the computational cost of using either of
these methods in many applications is prohibitive. Moreover, in most applications we are not interested in knowing the exact
form of the velocity distribution function, rather knowledge of its lower-order moments is sufficient [57]. For these reasons,
there is considerable motivation to develop predictive moment closures whose accuracy can be improved in a rational man-
ner [30,41,58]. Quadrature-based moment closures [16,19,21,42] fall into this category because, in principle, the accuracy of
these closures can be improved by increasing the number of quadrature nodes [29,45]. Nevertheless, a key technical challenge
with quadrature-based moment closures is the development of efficient moment-inversion algorithms for three-dimensional
velocity moments [21] that can be extended to reconstruct the velocity distribution function using higher-order moments.

We should note that because the weights are non-negative and the velocity abscissas are located in velocity phase space,
a quadrature-based moment method provides a realizable discretization of velocity phase space that is consistent with the
underlying moments [17]. Moreover, if integer moments up to order c are used in the moment-inversion algorithm, the
. All rights reserved.
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quadrature-based estimation of the moment of order cþ 1 is optimal in the sense that it is closest to the true value and has
the smallest possible error [29,61]. Compared to direct solvers, the quadrature-based discretization of velocity phase space is
very sparse (equal to the number of quadrature nodes). An important open question is thus to determine the range of accu-
racy that can be achieved using quadrature in comparison to direct solvers. Generally, in order to improve the accuracy for
finite Knudsen numbers, the number of quadrature nodes (and hence the number of transported velocity moments) must be
increased. In [21] the moment-inversion algorithm was limited to 8-node quadrature and 14 velocity moments up to third
order. In this work, we address the problem of finding a moment-inversion algorithm for higher-order velocity moments. In
particular, we describe an algorithm for computing an n3-node quadrature using ðn2 þ 3Þn velocity moments, where n is the
number of quadrature nodes in each direction. In order to verify the higher-order moment-inversion algorithm, we combine
it with a kinetic-based finite-volume method to solve the Riemann shock problem with 8-, 27- and 64-node quadratures
using 14, 36 and 76 moments, respectively, at finite Knudsen numbers.

As discussed in detail elsewhere [21], quadrature-based moment methods are related to other discrete velocity models
for the Boltzmann equation [7,25,27,36,49], but perhaps most closely related to off-lattice Boltzmann methods (oLBM)
[1]. The principal difference with oLBM is that in a quadrature-based moment method the velocity abscissas are computed
(along with the weights) directly from the moments instead of being held fixed. As in other quadrature methods
[19,20,29,43–45,61,66], allowing the weights and abscissas to adapt to the underlying moments of the distribution function
greatly increases the order of accuracy that can be obtained with a given number of abscissas. However, because moment
inversion with variable abscissas is highly nonlinear [55] and notoriously ill-conditioned [52], computation of the abscissas
must be done with the appropriate algorithms [29,52,61]. As shown in [21], allowing the velocity abscissas to vary at every
point in the flow has many advantages. For example, the treatment of high Mach number flows is not an issue, as well as
flows with arbitrary Knudsen numbers. Moreover, in the low-Mach-number limit, the velocity abscissas in the quadra-
ture-based moment method described in this work approach the same values as those used in oLBM [1] (i.e., they correspond
to the zeros of the Hermite polynomial of order n). In general, for quadrature-based moment methods the abscissas will be
the zeros of an orthogonal polynomial whose weighting function is the (unknown) velocity distribution function [17,55], and
the computational algorithms used to compute the abscissas exploit this relationship [29,52,61].

Quadrature-based moment methods also share some common features with gas-kinetic schemes [14,31,64,65]. In partic-
ular, both methods use velocity moments to reconstruct the velocity distribution function in order to compute the spatial
fluxes at the cell interfaces. Thus, the principle difference between the two methods is how the distribution function is
reconstructed from the moments. For gas-kinetic schemes, the distribution function is assumed to be close to a Maxwellian
distribution; hence, the method is ideally suited for gas flows with small Knudsen number (i.e., highly collisional gas flows).
In quadrature-based moment methods [29,61], the reconstructed distribution function is a finite set of weighted Dirac delta
functions that exactly reproduces the set of transported velocity moments. This reconstruction method offers several advan-
tages for treating kinetic equations with arbitrary Knudsen number (e.g. collision-less gases) and kinetic equations for phys-
ical problems with additional physics (e.g., fluid-particle and fluid-droplet flows with finite Stokes number and/or droplet
coalescence [15,16,21,23,34,37,38,54,62]). Nevertheless, the methodology [47,48,64] used to increase the spatial/temporal
accuracy in gas-kinetic schemes should be directly applicable to quadrature-based moment methods. Finally, we should note
that for gas flows near the Maxwellian limit (e.g. low Knudsen number) and for low-Mach number (i.e. incompressible)
flows, the efficient distribution reconstruction algorithm used in gas-kinetic schemes should be much faster than quadra-
ture-based reconstruction. However, for general kinetic equations far from equilibrium, the quadrature-based reconstruction
offers many advantages [21], such as the ability to describe crossing jets of particles in the collision-less limit [13,15,16,24].

The remainder of the paper is organized as follows. In Section 2 we introduce the kinetic theory for dilute particle flows,
where we use the term ‘‘particle” in the generic sense (i.e., hard spheres, molecules, droplets, etc.). Section 3 describes in
detail the quadrature-based moment-inversion method for the three-component velocity moments up to ninth order. In Sec-
tion 4 we review the kinetic-based numerical algorithm used to solve the velocity moment transport equations. Section 5 is
devoted to an example application (Riemann shock problem) to test the numerical implementation and, in particular, to
evaluate how the numerical solutions depend on the number of quadrature nodes used in the reconstruction for a given va-
lue of the Knudsen number. Finally, in Section 6 conclusions are drawn and the key characteristics of the proposed quadra-
ture-based moment method and numerical algorithm are discussed.

2. Kinetic theory of dilute particle flows

2.1. Kinetic equation

Consider the following kinetic equation for the velocity distribution function f ðv; x; tÞ of dilute monodisperse particles:
1 For
describ
@tf þ v � @xf þ @v � ðgf Þ ¼ C; ð1Þ
where v ¼ ðv1; v2;v3Þ is the particle velocity vector, g ¼ ðg1; g2; g3Þ is a body force,1 and C is the particle–particle collision term.
In this work, we will assume that the collision term can be closed using the Bhatnagar–Gross–Krook (BGK) approximation [3]:
fluid-particle flows, a velocity-dependent force, which is inversely proportional to the Stokes number, is required. The treatment of such terms is
ed in [21]. Here, we consider a system with infinite Stokes number.
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C ¼ 1
s
ðfeq � f Þ ð2Þ
where s is a collision time constant and feq is the Maxwellian distribution. In three dimensions,2 feq is given by
feqðvÞ ¼
q

ð2preqÞ3=2 exp � jv � Uj2

2req

 !
ð3Þ
where q ¼
R

f dv is the particle number density (zero-order moment), and U and req are the mean particle velocity and equi-
librium variance, respectively. For elastic collisions, req is a conserved quantity. Note that the Knudsen number is proportional
to the collision time s, so that the velocity distribution function is equal to feq when Kn ¼ 0. In the opposite limit, the particles
are collision-less and the velocity distribution function will be determined by the terms on the left-hand side of Eq. (1). As we
shall see below, the advantage of using the BGK approximation is that the moment equations derived from the collision term
are closed [57]. However, this is not a requirement and the quadrature-based moment method could also be used to close the
collision term [59]. In this work, our main interest is the closure of the transport term ðv � @xf Þ using moment methods for
spatially inhomogeneous flows (e.g. the Riemann shock problem), so the BGK approximation will be adequate.

2.2. Moment transport equations

Our principal interest is to develop moment closures using quadrature-based moment methods that employ moments of
increasing order. Let Mc

ijk denote the velocity moment of order c ¼ iþ jþ k, where the non-negative integers i; j; k denote the
orders for each velocity component:3
Mc
ijkðx; tÞ �

Z
v i

1v
j
2v

k
3f ðv; x; tÞdv: ð4Þ
Likewise, let
Dc
ijkðx; tÞ �

Z
v i

1v
j
2v

k
3feqðv; x; tÞdv ð5Þ
denote the moments of the equilibrium distribution. The transport equations for the moments can be found starting from Eq.
(1) [57]:
@tM
c
ijk þ @x1 Mcþ1

iþ1jk þ @x2 Mcþ1
ijþ1k þ @x3 Mcþ1

ijkþ1 ¼ ig1Mc�1
i�1jk þ jg2Mc�1

ij�1k þ kg3Mc�1
ikj�1 þ

1
s

Dc
ijk �Mc

ijk

� �
: ð6Þ
By convention, the moments with negative subscripts resulting from the body-force term are null. Note that for a given
order c this equation is not closed due to the spatial flux terms of order cþ 1 involving Mcþ1

iþ1jk;M
cþ1
ijþ1k and Mcþ1

ijkþ1. On the other
hand, the terms due to body forces and collisions are closed.

As noted above, the particle density corresponds to the moment of order zero. The three components of the mean velocity
vector U are defined in terms of the first-order moments:
M1
100 � qU1; M1

010 � qU2; M1
001 � qU3: ð7Þ
The second-order moments are used to define the velocity covariance matrix [21], denoted here by rU ¼ ½rab�. The trace of
rU is proportional to the particle temperature, and we define req � ðr11 þ r22 þ r33Þ=3. Conservation of mass, momentum
and energy during collisions yield, respectively,
D0
ijk ¼ q;

D1
100 ¼ qU1; D1

010 ¼ qU2; D1
001 ¼ qU3;

D2
ijk ¼ q req þ U2

1

� �
di2 þ q req þ U2

2

� �
dj2 þ q req þ U2

3

� �
dk2 þ qðU1U2dij þ U1U3dik þ U2U3djkÞ;

ð8Þ
where dij is the Kronecker delta. For higher-order moments, Dc
ijk depends uniquely on q;U and rU .

In quadrature-based moment methods [15,16,21], the spatial fluxes appearing in Eq. (6) are represented by a kinetic
description [6,14,51,53]. First, the components of the flux vector for moment Mc

ijk are decomposed into two contributions:
Mcþ1
iþ1jk ¼ Q�1;ijk þ Qþ1;ijk;

Mcþ1
ijþ1k ¼ Q�2;ijk þ Qþ2;ijk;

Mcþ1
ijkþ1 ¼ Q�3;ijk þ Qþ3;ijk;

ð9Þ
clarity, we will only consider 3-D flows in this work. However, it is straightforward to reduce the moment equations and quadrature formulas to treat
2-D flows.

e that this definition uses different subscripts to denote the moments than was used in [21] and elsewhere [57]. The new notation was adopted to
e the ordering of moments of high order.
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where the nth component of each contribution is defined in terms of the velocity distribution function:
4 By
Q�n;ijk �
Z

minðvn;0Þv i
1v

j
2v

k
3f ðvÞdv;

Qþn;ijk �
Z

maxðvn;0Þv i
1v

j
2v

k
3f ðvÞdv:

ð10Þ
In quadrature-based moment methods f is reconstructed as a point distribution function using the moments (i.e. as a
sum of Dirac delta functions with non-negative weights). Thus, Q�n;ijk and Qþn;ijk will be known at every point in the flow,
and can be used (e.g., with a finite-volume discretization [40]) to compute the spatial flux terms in the moment transport
equation (Eq. (6)). We will discuss the computation on the spatial fluxes in more detail in Section 4. However, based on
the analysis of [29], we should expect that using quadrature to estimate Mcþ1

ijk from the moments Mn
ijk; n 2 ð0;1; . . . ; cÞ will

be close to optimal.

2.3. Rotated central moments

The moment-inversion algorithm used in quadrature-based moment methods is constructed using a linear transforma-
tion of the central moments [21]. The latter are defined by
Cc
ijkðx; tÞ �

Z
ðv1 � U1Þiðv2 � U2Þjðv3 � U3Þkf ðv; x; tÞdv: ð11Þ
The central moment Cc
ijk can be expressed uniquely in terms of the set of all moments up to order c : M0

ijk;M
1
ijk; . . . ;Mc

ijk

� �
[21,57]. It is thus possible to write transport equations for each of the central moments starting from Eq. (6) [57]. In principle,
either system of moment equations can be used with quadrature-based moment methods as long as the spatial fluxes are
treated in an equivalent manner (i.e. using Eq. (9)). For the purposes of constructing a realizable quadrature, the optimal
set of moments to transport is not the central moments, but rather the rotated central moments defined by
Rc
ijkðx; tÞ �

Z X3

b¼1

L1bðvb � UbÞ
" #i X3

b¼1

L2bðvb � UbÞ
" #j X3

b¼1

L3bðvb � UbÞ
" #k

f ðv; x; tÞdv; ð12Þ
where the unitary matrix Lðx; tÞ ¼ ½Lab� depends on the local velocity covariance rU . More specifically, let c = v � U denote the
fluctuating (or particular) velocity vector, and let r = Lc. By construction, L is defined such that the covariance matrix for r,
denoted by rR, is diagonal [21]. Thus, R2

110 ¼ R2
101 ¼ R2

011 ¼ 0.4 For example, if rU is diagonal (e.g., as in the Riemann shock
problem), then L = I so that rR ¼ rU and Rc

ijk ¼ Cc
ijk.

In general, the rotated central moment Rc
ijk can be expressed uniquely in terms of the set of all moments up to order

c : M0
ijk;M

1
ijk; . . . ;Mc

ijk

� �
[21]. Thus, an optimal implementation of quadrature-based moment methods would solve the trans-

port equation for the rotated central moments. Hereinafter we will assume that the rotated central moments are known (or
can be computed from the set of transported moments) and focus on the moment-inversion algorithm needed to find the
quadrature weights and velocity abscissas from Rc

ijk. As described in [21] (and discussed in detail below), the velocity
abscissas consist of a finite set of N velocity vector fields Uaðx; tÞ where a 2 ð1; . . . ;NÞ. The moment-inversion algorithm
for Rc

ijk will provide a set of N rotated and translated velocity vector fields Raðx; tÞ. The key relation between the two sets
of velocity fields is
Ra ¼ LðUa � UÞ () Ua ¼ LTRa þ U ð13Þ
where L and U are known from the lower-order moments ðc 6 2Þ. The weights qa remain the same in either representation
[21]. In the next section we present a method for computing qa and Ra given Rc

ijk for N ¼ n3 with n 2 ð1;2;3; . . .Þ.
In summary, the set of discrete velocity abscissas used in quadrature-based moment methods (Eq. (13)) are translated

with respect to the mean velocity U and rotated using L into a stress-free (diagonal) coordinate system. The translation
ensures that the quadrature remains Galilean invariant and realizable (i.e. non-negative weights) for arbitrary Mach number.
The rotation is required to ensure that the quadrature remains realizable when the velocity covariances are far from zero.
(Negative weights can be found for non-rotated systems even when the normalized velocity distribution function is Gauss-
ian.) As discussed elsewhere [21], quadrature-based moment methods offer several advantages over discrete velocity meth-
ods with fixed abscissas [1,7,25,27,35,36,49], perhaps the most significant of which is the ability to treat non-isothermal
flows at arbitrary Mach number. (With fixed abscissas, the weights will eventually become negative as the Mach number
increases from zero.) This ability can be traced back to (i) the kinetic-based fluxes (Eq. (10)) and (ii) the moment-inversion
algorithm that generates a realizable velocity distribution function.
definition, R0
000 ¼ q and R1

ijk ¼ 0.
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3. A high-order moment-inversion algorithm

3.1. Quadrature-based moment methods

In quadrature-based moment methods the velocity distribution function is represented by a set of point measures [17]:
5 Exp
f ðvÞ ¼
XN

a¼1

qadðv � UaÞ; ð14Þ
where the weights qa and velocity abscissas Ua are uniquely determined from a finite set of moments [17,45]. In our pre-
vious work [21], we presented a moment-inversion algorithm for computing the weights and abscissas with N ¼ 8 that uses
velocity moments up to third order. We also demonstrated that the resulting flow code could be used to approximate flows
with arbitrary Knudsen number. However, due to the relatively low order of the moments employed, the accuracy of the flow
predictions decreases (except in very particular cases such as two crossing jets without collisions) with increasing Knudsen
number. Thus, in order to improve the accuracy for larger Knudsen numbers, we seek to increase the order of the moments
used in the quadrature or, equivalently, to increase the number of abscissas.

In terms of the quadrature weights qa and abscissas Ra ¼ ðr1a; r2a; r3aÞ, the rotated central moments can be expressed as
Rc
ijk ¼

XN

a¼1

qari
1arj

2ark
3a: ð15Þ
Note that for moments in the moment set used to construct the quadrature, this expression is exact. For all other mo-
ments, Eq. (15) is the quadrature approximation for Rc

ijk. By replacing Ra with Ua, an expression analogous to Eq. (15) can
be written for the moments Mc

ijk. Likewise, the flux vectors in Eq. (10) can be written using Eq. (14) as
Q�n;ijk ¼
XN

a¼1

qa minðuna;0Þui
1auj

2auk
3a;

Qþn;ijk ¼
XN

a¼1

qa maxðuna; 0Þui
1auj

2auk
3a;

ð16Þ
where Ua ¼ ðu1a;u2a;u3aÞ. In this work, we are primarily interested in determining how the accuracy of Eq. (16) depends on
the order of the quadrature approximation (or, equivalently, on the choice for N).

In the following, the steps used to construct the quadrature will be the same for each n:

(1) Using 2n moments in each direction (e.g. R0
000;R

1
001; . . . ;R2n�1

002n�1), compute n univariate weights and n abscissas using the
product-difference (PD) algorithm [29,45,52,61] (see Appendix A).

(2) Construct the velocity abscissas Ra from the tensor product of the abscissas in each direction.
(3) Compute the weights qa by solving a linear system formed from the set of mixed moments with indices up to n� 1

(e.g. R2
110;R

2
101; . . . ;R3n�3

n�1n�1n�1).

For the 1-D quadratures in step (1), the weights from the PD algorithm are guaranteed to be non-negative for realizable
moments, and the abscissas will be highly nonlinear functions of the 2n moments [17,29,61]. The question of whether or not
the resulting 3-D quadrature is valid depends on the final step. If the weights are non-negative, then the reconstructed dis-
tribution function (Eq. (14)) will be realizable. The latter is particularly important because of the kinetic scheme used to com-
pute the fluxes (Eq. (16)). Indeed, the overall numerical scheme will only be stable if the fluxes are defined using a realizable
distribution function. For Maxwellian distributions, the quadratures computed using the above steps will always have
positive weights (i.e. they will correspond to Gauss–Hermite quadratures [56]). As the moments used to construct the quad-
rature move farther away from the Maxwellian values, it is possible for one or more of the weights to be become negative.5 In
previous work [21], we showed that for 8-node quadrature it is possible to eliminate the negative weight by setting it to zero
and reducing the size of the linear system in step (3). However, in actual calculations with 8-node quadrature we found that this
procedure was never needed. Likewise, for the Riemann shock problem considered in this work, we do not observe negative
weights for any of the quadratures. However, it is possible to select realizable moments that generate one or more negative
weights. In general, an algorithm will be needed to ‘‘deflate” the linear system in step (3) by setting negative weights to zero
and solving a reduced linear system for the remaining weights. However, such an algorithm is likely to be somewhat compli-
cated in order to deal with each special case (e.g. one vs. multiple zero weights). We will thus leave construction of an algorithm
to deal with negative weights to future work.

Concerning the order of the quadrature, there are three possible choices: (i) the order of the highest moment used to con-
struct the quadrature ðc ¼ 3n� 3Þ, (ii) the order of the highest moment used in the univariate quadrature ðc ¼ 2n� 1Þ, or
(iii) the highest order for which all moments of that order are included ðc ¼ nÞ. For univariate quadrature, the abscissas found
erience shows that this is more likely to occur with inelastic collisions or near boundary with specular reflections.
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from the PD algorithm are the zeros of an orthogonal polynomial of order n [17,29,61]. For example, if the moments corre-
spond to a standardized Gaussian distribution, then the abscissas will be the Gauss–Hermite quadrature points [56]. In com-
parison to lattice Boltzmann methods with fixed discrete velocities and varying weights where the formal order in one
dimension is determined by the number of abscissas ðnÞ [35], by allowing both the weights and abscissas to vary the quad-
rature method of moments in one dimension doubles the order the accuracy [17,45]. Hereinafter, since there is ambiguity as
to the order, we will refer to each quadrature by the number of nodes in velocity phase space (i.e. n3).

For completeness, we note that the simplest quadrature uses one node and controls only the first four moments (i.e. q;U),
resulting in the pressure-less gas dynamics equation [5,6,11]. In most applications, the second-order moments are important
and thus we will consider only quadratures with n > 1. Moreover, because 2-D quadratures can be found from 3-D quadr-
atures by eliminating the moments in the third direction, in the following we will only discuss construction of quadratures
for 3-D cases. For completeness, we will begin by reviewing the 8-node quadrature developed in [21].

3.2. 8-Node quadrature

An 8-node quadrature can be constructed using the following set of 14 moments (including only four of the ten third-
order moments):6
6 For
order.

7 Rec
R0
000;R

1
100;R

1
010;R

1
001;R

2
200;R

2
110;R

2
101;R

2
020;R

2
011;R

2
002;R

3
300;R

3
111;R

3
030;R

3
003

� �
:

The abscissas are constructed from the tensor product of the univariate abscissas in each of the three directions [21]. Let
XðiÞ1 and XðiÞ2 denote the two abscissas in direction i 2 ð1;2;3Þ, and qðiÞ1 and qðiÞ2 the corresponding weights. By applying the
PD algorithm, we find
R0
000;R

1
100;R

2
200;R

3
300

� �
) ðqð1Þ1;qð1Þ2;Xð1Þ1;Xð1Þ2Þ;

R0
000;R

1
010;R

2
020;R

3
030

� �
) ðqð2Þ1;qð2Þ2;Xð2Þ1;Xð2Þ2Þ;

R0
000;R

1
001;R

2
002;R

3
003

� �
) ðqð3Þ1;qð3Þ2;Xð3Þ1;Xð3Þ2Þ:

ð17Þ
Using the tensor product, the set of eight abscissas Ra is given by
fðXð1Þ1;Xð2Þ1;Xð3Þ1Þ; ðXð1Þ2;Xð2Þ1;Xð3Þ1Þ;
ðXð1Þ1;Xð2Þ2;Xð3Þ1Þ; ðXð1Þ2;Xð2Þ2;Xð3Þ1Þ;
ðXð1Þ1;Xð2Þ1;Xð3Þ2Þ; ðXð1Þ2;Xð2Þ1;Xð3Þ2Þ;
ðXð1Þ1;Xð2Þ2;Xð3Þ2Þ; ðXð1Þ2;Xð2Þ2;Xð3Þ2Þg;

ð18Þ
which uniquely determines the velocity abscissas Ua using Eq. (13).
As noted earlier, the weights qa are determined by solving a linear system. The first four equations in the linear system

are found by enforcing agreement with the three univariate quadratures:
q1 þ q3 þ q5 þ q7 ¼ qð1Þ1;

q2 þ q4 þ q6 þ q8 ¼ qð1Þ2;

q1 þ q2 þ q5 þ q6 ¼ qð2Þ1;

q1 þ q2 þ q3 þ q4 ¼ qð3Þ1:

ð19Þ
The remaining four equations are found by enforcing the mixed moments:7
Xð1Þ1Xð2Þ1q1 þ Xð1Þ2Xð2Þ1q2 þ Xð1Þ1Xð2Þ2q3 þ Xð1Þ2Xð2Þ2q4 þ Xð1Þ1Xð2Þ1q5 þ Xð1Þ2Xð2Þ1q6 þ Xð1Þ1Xð2Þ2q7 þ Xð1Þ2Xð2Þ2q8 ¼ R2
110;

Xð1Þ1Xð3Þ1q1 þ Xð1Þ2Xð3Þ1q2 þ Xð1Þ1Xð3Þ1q3 þ Xð1Þ2Xð3Þ1q4 þ Xð1Þ1Xð3Þ2q5 þ Xð1Þ2Xð3Þ2q6 þ Xð1Þ1Xð3Þ2q7 þ Xð1Þ2Xð3Þ2q8 ¼ R2
101;

Xð2Þ1Xð3Þ1q1 þ Xð2Þ1Xð3Þ1q2 þ Xð2Þ2Xð3Þ1q3 þ Xð2Þ2Xð3Þ1q4 þ Xð2Þ1Xð3Þ2q5 þ Xð2Þ1Xð3Þ2q6 þ Xð2Þ2Xð3Þ2q7 þ Xð2Þ2Xð3Þ2q8 ¼ R2
011;

Xð1Þ1Xð2Þ1Xð3Þ1q1 þ Xð1Þ2Xð2Þ1Xð3Þ1q2 þ Xð1Þ1Xð2Þ2Xð3Þ1q3 þ Xð1Þ2Xð2Þ2Xð3Þ1q4 þ Xð1Þ1Xð2Þ1Xð3Þ2q5 þ Xð1Þ2Xð2Þ1Xð3Þ2q6

þ Xð1Þ1Xð2Þ2Xð3Þ2q7 þ Xð1Þ2Xð2Þ2Xð3Þ2q8 ¼ R3
111;

ð20Þ

which follow directly from the definition of the rotated central moments in terms of the quadrature weights and abscissas
(Eq. (15)). This system of equations can be solved to find the weights. As discussed in [21], the weights will be non-negative
as long as R3

111 is close to zero. As mentioned earlier, in all applications of 8-node quadrature carried out to date, the weights
have remained non-negative.
consistency, we will always list moments in the order determined by decreasing the ith index, then the jth index, and finally the kth index for a given

all that by definition R2
110 ¼ R2

101 ¼ R2
011 ¼ 0. The left-hand side of these equations is simply Eq. (15) with the abscissas ðr1a; r2a; r3aÞ replaced by Eq. (18).



Table 1
Order and indices for 36 rotated central moments Rc

ijk in 27-node quadrature.

c 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

i 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0
j 0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0
k 0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3
c 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6
i 4 2 2 2 1 1 0 0 0 5 2 2 1 0 0 2
j 0 2 1 0 2 1 4 2 0 0 2 1 2 5 0 2
k 0 0 1 2 1 2 0 2 4 0 1 2 2 0 5 2

R.O. Fox / Journal of Computational Physics 228 (2009) 7771–7791 7777
3.3. Extension to n3-node quadrature

Before discussing n3-node quadrature, a few remarks on the 8-node quadrature will prove insightful. First, we note from
Eq. (19) that in direction 1 two equations are needed to control qð1Þ1 and qð1Þ2, while only one equation is needed in the other
two directions. (The other two equations are linearly dependent [21].) In general, n equations will result for direction 1 and
n� 1 equations for each of the other two directions. The total number of linear equations that is found by enforcing the three
univariate quadratures is thus N1 ¼ 3n� 2. The remaining N2 ¼ n3 � 3nþ 2 linear equations come from fixing the mixed mo-
ments. Second, the selection of the mixed moments cannot be done arbitrarily. At a minimum, for a particular mixed mo-
ment the resulting equation must be linearly independent. The choice of mixed moments with indices less than or equal
to n� 1 ensures that the linear system is non-singular and, because the number of such moments equals N2, appears to
be unique. Although we do not have a proof for the latter, experience with Maxwellian moments [22] suggests that replacing
any one of these mixed moments with another one not included in the set results in a singular system. Third, the N1 equa-
tions found by enforcing the univariate quadratures can be replaced by the N1 non-mixed moment equations up to order
n� 1 (e.g., R0

000;R
1
100;R

1
010;R

1
001 for n ¼ 2). This follows from the fact that the 1-D quadratures exactly reproduce these mo-

ments.8 In summary, the quadrature weights can be determined from a linear system involving the n3 moments with indices
n� 1 or less.

Based on the observations given above, we can conclude that the total number of moments needed to define the n3-node
quadrature is N3 ¼ ðn2 þ 3Þn. Hence, the input to the moment-inversion algorithm is the set of N3 moments Rc

ijk with
0 6 i; j; k < n and Ri

i00;R
j
0j0;R

k
00k with n 6 i; j; k < 2n. For n ¼ 3, the resulting 27-node quadrature requires 36 moments (see

Table 1). For n ¼ 4, the 64-node quadrature uses 76 moments (see Table 2). We have successfully implemented the
moment-inversion algorithm to construct n3-node quadratures for n 6 4 in 3-D, and n2-node quadratures for n 6 5 in
2-D. Implementation for larger n is hindered only by practical considerations concerning the number of moment transport
equations that must be solved. In all cases investigated thus far the linear system used to find the weights remained well
conditioned. Our numerical implementation was verified by applying it to Maxwellian moments and checking that the
resulting weights and abscissas correspond to Gauss–Hermite quadrature [35,56]. In most of the numerical examples that
we have investigated to date, the moments have evolved to values far from Maxwellian without incurring negative weights.
However, for flows with very large (or infinite) Knudsen number and specular reflections at the boundaries, negative weights
have been observed. For such flows it will be necessary to implement correction algorithms such as the one developed for 8-
node quadrature [21].

In conclusion, we should note that the moment-inversion algorithm described above can be used to invert the central
moments Cc

ijk

� �
in place of the rotated central moments Rc

ijk

� �
for cases where the velocity covariances are not too large

(e.g., low-Mach-number flows such as plane Couette and Poiseuille flows [35]).9 The advantage of using central moments
is that their transport equations are relatively easy to derive [57], while those for rotated central moments are more compli-
cated. In this work we will consider only the Riemann shock problem for which the correlation coefficients are zero (i.e.
Rc

ijk ¼ Cc
ijk). However, in work to be reported elsewhere, we have applied the moment-inversion algorithm with central moments

to low-Mach-number flows and find results completely consistent with higher-order lattice Boltzmann methods [35]. Another
approach [21] is to transport the moments Mc

ijk and use a projection to recompute them using the weights and abscissas at the
end of each time step. Because the rotation step couples all central moments of the same order, transporting the moments (or
the central moments) requires all moments up to order 3n� 3 (which are needed to compute R3n�3

n�1n�1n�1). For example, with
n ¼ 4 all 220 moments10 up to order c ¼ 9 must be transported, compared to the 76 rotated central moments needed to com-
pute the weights and abscissas. Thus, a relatively large reduction in the number of moment transport equations could be
achieved by solving directly for Rc

ijk. Another nontrivial consideration in the numerical implementation is that computing Rc
ijk

from Mc
ijk can be subject to severe round-off errors in cases where the mean velocity U is large relative to the RMS velocity.

In contrast, the computation of Rc
ijk from Cc

ijk is well behaved.
8 As noted earlier, negative weights cannot be caused by non-mixed moments. Thus, any correction algorithm designed to eliminate negative weights must
rely on removing mixed moments.

9 For Gaussian moments, the weights will be non-negative if the magnitudes of the correlation coefficients are less than approximately 0.5.
10 The number of moments of order c in 3-D is ðcþ 1Þðcþ 2Þ=2.



Table 2
Order and indices for 76 rotated central moments Rc

ijk in 64-node quadrature.

c 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

i 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0
j 0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0
k 0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3
c 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
i 4 3 3 2 2 2 1 1 1 1 0 0 0 0 0 5 3 3 3 2
j 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 0 2 1 0 3
k 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 0 1 2 0
c 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
i 2 2 2 1 1 1 0 0 0 0 6 3 3 3 3 2 2 2 1 1
j 2 1 0 3 2 1 5 3 2 0 0 3 2 1 0 3 2 1 3 2
k 1 2 3 1 2 3 0 2 3 5 0 0 1 2 3 1 2 3 2 3
c 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 9
i 0 0 0 7 3 3 3 2 2 1 0 0 3 3 2 3
j 6 3 0 0 3 2 1 3 2 3 7 0 3 2 3 3
k 0 3 6 0 1 2 3 2 3 3 0 7 2 3 3 3
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4. Numerical algorithm for moment transport

For the applications considered in Section 5, the rotated central moments are the same as the central moments. Moreover,
the mean velocity is at most only a factor of two larger than the RMS velocity (i.e. the speed of sound). We will thus work
directly with the moments Mc

ijk. The system of moment transport equations (Eq. (6)) can be solved numerically for 3-D prob-
lems by extending the numerical methods described in [15,16,21]. Here, however, we are interested in shock propagation in
only one spatial dimension and time. Hence we will describe the numerical method in the context of one-dimensional fluxes.
The algorithm follows closely to the one described in [21] with modifications to increase the order of the time and space
discretizations. Although the body force term is not required for the Riemann shock problem, we will include it in the dis-
cussion here for future use (i.e. finite-Stokes-number flows).

4.1. Notation and moment transport equation

Let x1 be the inhomogeneous direction and �x2 be the direction of the body force. The vector of moments will be denoted

by M ¼ Mc
ijk

h i
, where each component corresponds to a particular set of i; j; k. The corresponding set of weights and abscissas

found from the moment-inversion algorithm will be denoted by N ¼ ½qa;Ua�. The vector of equilibrium moments will be

denoted by D ¼ Dc
ijk

h i
. The vectors of the two components of the spatial fluxes in the direction x1, which are functions of

N (Eq. (16)), will be denoted by Q�1 ðNÞ ¼ Q�1;ijk
h i

and Qþ1 ðNÞ ¼ Qþ1;ijk
h i

. The vector of moments appearing in the body force

term, which is a subset of M, will be denoted by Mg ¼ jMc�1
ij�1k

h i
. Using this notation, the one-dimensional moment transport

equation becomes
@tMþ @x1 Q�1 ðNÞ þ Qþ1 ðNÞ
� �

¼ �gMg þ
1
s
ðD�MÞ: ð21Þ
Note that D depends on the lower-order moments through q;U and req. In most applications, s will depend on q and req.
The moment transport equation will be solved using a kinetic-based finite-volume method [16,21]. Note, however, that
when designing such an algorithm care must be taken to ensure that the moment set remains realizable when advanced
in time (in particular during the spatial transport step [46,60,63]). In quadrature-based moment methods, realizable mo-
ments are required for the moment-inversion algorithm.

4.2. The solution algorithm

In previous work [21], a first-order algorithm was proposed. Here, we develop an algorithm that uses a modified two-step
Runga-Kutta method for advancing in time and a second-order flux-limited method in space. In order to accommodate the
various physical processes, time splitting is used inside each Runga-Kutta step. We will use the subscript D to denote quan-
tities evaluated at the half-time step. The time step Dt is adjusted on each iteration to account for changes in the velocity
abscissas and the collision frequency. The solution is obtained on a fixed uniform grid of size Dx. For the Riemann shock prob-
lem, the boundary conditions are not important if the shocks are not allowed to reach the boundaries. We will thus use the
reflective boundaries described in [21]. For initial conditions, the moments in the entire computational domain are set to
Maxwellian with local values for the density, mean velocity, and particle temperature. The initial conditions for the Riemann
shock problem are as follows: the density changes from ql to qr at the centerline, the mean velocity is null, and the particle
temperature is uniform (set equal to unity).
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The individual steps in the solution algorithm are as follows:

(1) Initialize moments M.
(2) Compute central moments from M and use the moment-inversion algorithm to compute N.
(3) Advance the moments in time by Dt using the moment transport equations:
Fig. 1.
(green)
in this
(a) Evaluate Dt.
(b) Set MD ¼M.
(c) Evaluate moments and weights and abscissas at half-time step (time split):
Selected
: 27-nod
figure le
(i) Advance MD by Dt=2 due to spatial fluxes Q�1 ðNÞ and Qþ1 ðNÞ.
(ii) Compute central moments from MD and use the moment-inversion algorithm to compute ND.
(iii) Advance ND and MD by Dt=2 due to body forces.
(iv) Advance MD by Dt=2 due to collisions.
(v) Compute central moments from MD and use the moment-inversion algorithm to compute ND.
(vi) Apply boundary conditions to MD and ND.
(d) Advance moments and weights and abscissas for full time step (time split):

(i) Advance M by Dt due to spatial fluxes Q�1 ðNDÞ and Qþ1 ðNDÞ.
(ii) Compute central moments from M and use the moment-inversion algorithm to compute N.
(iii) Advance N and M by Dt due to body forces.
(iv) Advance M by Dt due to collisions.
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(v) Compute central moments from M and use the moment-inversion algorithm to compute N.
(vi) Apply boundary conditions to M and N.
(4) Return to step 3.

In the inner most loops (3c) and (3d), the moments are advanced sequentially (i.e. time splitting) with the output from a
sub-step used to evaluate the change in the next sub-step. The details on each of the sub-steps are described next. Note that
in order to keep the notation as simple as possible, we do not introduce new symbols to indicate the values of M at the end of
each sub-step. Instead, we let M� denote the value of the moments at the end of a sub-step (and thus implicitly at the begin-
ning of the next sub-step).

4.2.1. Time-step evaluation
The time step Dt is set to a fraction of the smallest characteristic time (advection or collisions):
Dt ¼minðs=10; sCFLÞ ð22Þ
where s and sCFL are, respectively, the smallest local collision and advection times in the entire domain at the current time
step. For each grid cell, the local advection time is defined by
sCFL ¼ CCFLDx=Umax ð23Þ
where Umax ¼ maxaju1aj and u1a are the local u1-velocity abscissas. In the Riemann shock problem, the Courant number CCFL

is set to 0.5, and we define the local collision time as
s ¼ b
q ffiffiffiffiffiffiffiffireq
p ð24Þ
where b (proportional to the collision cross section) is a constant. Note that the Knudsen number varies linearly with b.

4.2.2. Spatial fluxes
Because of the conservative form of Eq. (21), the finite-volume method [40] is a natural candidate for its discretization.

The underlying kinetic equation (Eq. (1)) can be used for the derivation of a numerical flux formula that ensures the robust-
ness of the corresponding scheme. The finite-volume scheme used in this work to advance by Dt the moments at grid cell i is
defined by
M�
i ¼Mi �

Dt
Dx

G1 Nþi ;N
�
iþ1

� �
� G1 Nþi�1;N

�
i

� �� �
; ð25Þ
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where G1 is the flux function defined in terms of the weights and abscissas (Eq. (16)):
Fig. 3.
(green)
in this
G1ðNþ;N�Þ ¼ Qþ1 ðN
þÞ þ Q�1 ðN

�Þ: ð26Þ
In the first-order scheme used in our previous work [16], Nþ ¼ N� ¼ N. More generally, in order to be consistent with the
kinetic-based description of the fluxes (Eq. (10)), Qþ1 Nþi

� �
should be found from the reconstructed velocity distribution func-

tion on the right face of grid cell i. Likewise, Q�1 N�i
� �

should be found from the reconstructed velocity distribution function on
the left face of grid cell i.

For the second-order scheme, we use the spatial derivatives of the weights and abscissas (denoted by @1N) to evaluate the
weights and abscissas at the cell faces (i.e. to reconstruct the velocity distribution function at the cell faces):
N� ¼ N� Dx
2 @1N;

Nþ ¼ Nþ Dx
2 @1N;

ð27Þ
where @1Ni is defined by
@1Ni ¼minmod
Ni � Ni�1

Dx
;
Niþ1 � Ni

Dx

	 

ð28Þ
and
minmodðx; yÞ ¼ signðxÞ 1þ signðxyÞ
2

	 

minðjxj; jyjÞ: ð29Þ
In Eq. (28) the minmod function is applied to each component of N.) Note that the first-order scheme is guaranteed [16] to
generate realizable moments from Eq. (25). A necessary, although probably not sufficient, condition for obtaining realizable
moments from the second-order scheme is that the weights in N� and Nþ be non-negative (given that the weights in N are
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non-negative). In other words, the reconstructed velocity distribution functions must be well defined. Note that in previous
work [16], the second-order scheme was defined by estimating the moments (i.e. M instead of N) at the cell faces. Either
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method can work, but when using M it is more difficult to determine whether the estimated moments are realizable. In con-
trast, when using N it suffices to check that the estimated weights are non-negative. More details on recent advances in the
development of higher-order realizable schemes can be found in [60].

4.2.3. Body forces
The body-force term in Eq. (21) is equivalent to [21,23]
Fig. 6.
64-nod
the web
dqa

dt
¼ 0;

duia

dt
¼ �gdi2b () @tM ¼ �gMg :

ð30Þ
Thus, given N, the changes in the u2-velocity abscissas over a time step Dt are
u�2a ¼ u2a � gDt; ð31Þ
which yields N� and, hence, M�. For velocity-dependent forces, an expression analogous to Eq. (30) also holds [21,23]. How-
ever, because the velocity abscissas found by solving a nonlinear ODE will not be constrained to a tensor product, it is nec-
essary to apply the moment-inversion algorithm to M�. For velocity-independent forces, this is not required since all of the
abscissas are translated uniformly in velocity phase space. For the Riemann shock problem, g ¼ 0.

4.2.4. Collisions
The change in the moments due to BGK collisions over a time step Dt can be evaluated explicitly at each grid cell:
M� ¼ Dþ ðM� DÞ expð�Dt=sÞ ð32Þ
where s is the local collision time (Eq. (24)) evaluated using M.
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5. Application to the Riemann shock problem

In order to test the solution behavior with increasing numbers of nodes, we will simulate the Riemann shock problem in
an open domain for different values of the Mach number Ma and the Knudsen number Kn. Using the initial RMS velocity (i.e.
initial particle temperature), the particle diameter, and the number density qr on the right-hand side of the domain, the
Boltzmann equation can be made dimensionless. In the Riemann shock problem, the density on the left-hand side of the do-
main is ql at time zero, and the initial particle temperature is uniform. The velocity distribution function is initially set to
Maxwellian with zero mean velocity. The collision time is controlled by the parameter b in Eq. (24). The density ratio
ql=qr determines the Mach number. In the limit b ¼ 0, the moment transport equations reduce to the Euler equation for
an inviscid compressible fluid. As discussed in [2,12,50], the time evolution of the system is well known and includes a
left-moving rarefaction wave (or expansion fan), a contact surface, and a right-moving shock wave. The velocity of the shock
wave in the Euler limit can be computed from the density ratio and the Mach number. When b > 0 the structure of the solu-
tion changes and the temperature in the shock is no longer isotropic. In the absence of collisions ðb ¼ 1Þ particles move
without changing their velocity. In this work, we are interested in how the solution depends on the number of quadrature
nodes for different values of ql=qr and b. Note that, due to the symmetry of the Riemann problem, only a relatively small
subset of the transported moments are nonzero (e.g., 24 out of 76 for 64-node quadrature).

In [2], solutions to the Riemann shock problem with Ma ¼ 1:25 and Ma ¼ 2:05 are presented for finite collision times.
Results for Ma ¼ 1:25 and b ¼ 0:01 found using the quadrature-based moment closure with 8, 27, and 64 nodes are pre-
sented in Fig. 1. For this case, the collisions are relatively rapid compared to transport, and therefore the particle temperature
in the flow direction Tp is only slightly larger than in the normal direction Tn inside the shock. By comparing with the results
in [2], we can observe that the 27- and 64-node simulations (which are nearly identical for the quantities shown) are in good
agreement, while the 8-node simulation is significantly different. The shear stress r11 and the heat flux q1 are defined,
respectively, in terms of the central moments by
Fig. 7.
64-nod
the we
r11 ¼ req � C2
200 and q1 ¼

1
2

C3
300 þ C3

120 þ C3
102

� �
:

−4 −2 0 2 4
0

2

4

6

8

10
ρ

−4 −2 0 2 4
−0.5

0

0.5

1

1.5

U
1

−4 −2 0 2 4

0.8

1

1.2

1.4

T
n

−4 −2 0 2 4
0

0.5

1

1.5

2

T
p

−4 −2 0 2 4
−6

−4

−2

0

2

4

2q
1

−4 −2 0 2 4
−1

0

1

2

3

σ
11

Riemann shock problem at t ¼ 1:3 with b ¼ 1. Dashed line (blue): 8-node quadrature. Dash-dot line (green): 27-node quadrature. Solid line (red):
e quadrature. Dotted line (black): Particle temperature. (For interpretation of the references in colour in this figure legend, the reader is referred to
b version of this article.)



R.O. Fox / Journal of Computational Physics 228 (2009) 7771–7791 7785
Note that q1 contains third-order moments that are not included in the 8-node quadrature (i.e. they are closed using the
quadrature), while such moments are included in the 27- and 64-node quadratures. It can be observed from the plots of q1 in
Fig. 1 that the 8-node quadrature predicts the incorrect behavior inside the shock and in the rarefaction wave, and this re-
sults in an under prediction of r11 in the shock. In contrast, the 27- and 64-node quadratures predict the correct behavior for
r11 and q1.

In order to understand the structure of the solution for Ma ¼ 1:25 as a function of the number of quadrature nodes, we
present in Fig. 2 the normalized weights and u1-velocity abscissas corresponding to Fig. 1. Note that the weights are normal-
ized such that for a Maxwellian distribution they would be independent of position. Thus, the deviations from straight lines
observed in Fig. 2 indicate points in the flow where the velocity distribution is not in equilibrium (i.e. due to non-zero b). For
b ¼ 0:01, the deviations are relatively small. The u1-velocity abscissas in Fig. 2 determine the spatial fluxes in the kinetic-
based solver. Each abscissa is governed by a Riemann equation [23] with interaction terms due to collisions. By increasing
the number of nodes, the spatial fluxes are described with more characteristic velocities. As noted above, in order to correctly
capture q1 at least three u1-velocity abscissas are required for b ¼ 0:01.

The results for Ma ¼ 2:05 are shown in Figs. 3 and 4. Consistent with the lower-Mach-number case, we observe that q1 is
not well predicted with 8-node quadrature. Moreover, the error in r11 near the origin generates a discontinuity in q and U1.
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From Fig. 4 we see that the discontinuity arises in the 8-node quadrature when the lower u1-velocity abscissa changes sign
from negative to positive. Remarkably, no discontinuities are observed for 27- or 64-node quadrature, even though the u1-
velocity abscissas change sign. For Ma ¼ 2:05; Tp and Tn are relatively far from equilibrium. Comparing the 27- and 64-node
quadratures, we see that the results in Fig. 3 are very similar at all locations except inside the shock where the Knudsen num-
ber is largest [2]. Thus, as expected, as the Knudsen number increases more quadrature nodes are requires to capture the
non-equilibrium behavior. The extent of the latter can be judged by the deviations of the normalized weights in Fig. 4, which
are largest just inside the shock.

In order to probe the dependence of the quadrature-based moment method on the Knudsen number, we have computed
the Riemann shock problem with ql=qr ¼ 19 for three values of b: 0.005, 0.5, and1 (i.e. collision-less particles). For all three
cases, we initialize the velocity distribution function as Maxwellian with unit particle temperature and zero mean velocity.
The case with b ¼ 0:005 is highly collisional and the results (Fig. 5) are close to the Euler solution. Note that for 8, 27, and 64
nodes the density, mean velocity and particle temperatures are nearly identical. However, as observed earlier, q1 inside the
shock has the wrong sign for 8-node quadrature. This is again a result of not transporting all of the third-order moments in 8-
node quadrature. The case with b ¼ 0:5 is weakly collisional and the results (Fig. 6) are significantly different than the Euler
solution. With 8-node quadrature, the discontinuities in the moments are again observed, as well as the poor predictions of
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q1 in the shock. Behind the shock, the results for 27- and 64-node quadrature are in good agreement, but inside the shock
they are very different. This result suggests that more than 64 nodes will be required for weakly collisional flows. The results
for collision-less particles are shown in Fig. 7 and, as expected, the results depend strongly on the number of nodes. Never-
theless, despite the lack of collisions, it is noteworthy that the reconstructed distribution function remains realizable (i.e. the
weights are positive).

The behavior of the normalized weights and u1-velocity abscissas are shown in Figs. 8 and 9, respectively, for each value
of b and for 8-, 27-, and 64-node quadratures. For b ¼ 0:5, it is clear that the velocity distribution function is strongly non-
equilibrium, especially in the shock. For b ¼ 1, the normalized weights change discontinuously, while the u1-velocity abscis-
sas remain unchanged. As mentioned earlier, the latter is completely consistent with the un-coupled structure of the pres-
sure-less gas dynamics equation that governs each velocity abscissa in the collision-less limit [23]. In this limit, the weights
are transported with constant velocities and thus the smooth changes in the weights seen in Fig. 8 for b ¼ 1 are due to
numerical diffusion. It is remarkable that the u1-velocity abscissas remain constant for b ¼ 1, even though they are com-
puted indirectly by transporting the moments and using the moment-inversion algorithm. This fact demonstrates that
the kinetic-based algorithm retains the hyperbolic nature of the abscissa transport equations. Finally, we should note that
the solution in the collision-less limit is very dependent on the initial velocity distribution function (which was set to Max-
wellian in this work). One could, for example, choose an initial distribution with a finite set of velocities for which the quad-
rature representation is exact (e.g., the crossing-jets problem considered in [21]). Thus, in general, there will not be a one-to-
one correspondence between the number of moments needed to represent a solution to the kinetic equation and value of the
Knudsen number.

As a final example, we consider a variation on the Riemann problem where the initial density is uniform, but the RMS
velocities are different on the left and right halves of the domain. Unlike in the previous example with uniform temperature,
the velocity abscissas will not be constant for b ¼ 1. Instead, at time zero the velocity abscissas are discontinuous at the
origin (but the mean velocity is still null). Results for this case with b ¼ 0:05 are shown in Fig. 10. As with the Riemann shock
problem, 8-node quadrature does not predict the correct behavior for q1. In contrast, with 27- and 64-node quadrature the
results are very similar to each other, indicating that 27-node quadrature suffices for this value of b. For larger b, the presence
of discontinuous initial velocity abscissas has ramifications on the realizability of the reconstructed distribution function. For
example, with b ¼ 1 we find that some of the weights with 27- and 64-node quadrature become negative. Thus, in order to
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treat cases that are weakly collisional with 27- or 64-node quadrature, it will be necessary to devise an algorithm to treat
negative weights as was done in [21] for 8-node quadrature.
6. Discussion and conclusions

In this work we have extended the 8-node quadrature method of moments for approximating solutions to the kinetic
equation developed in [21] to higher-order velocity moments. The key technical challenge was the formulation of a mo-
ment-inversion algorithm for n3 nodes where n 2 ð1;2; . . .Þ. In 3-D, the moment-inversion algorithm constructs three 1-D
quadratures using the PD algorithm in each direction, and forms the 3-D velocity abscissas as a tensor product of the 1-D
abscissas. The weights are then determined from a linear system using mixed moments with indices up to n� 1. For a joint
Gaussian distribution, the resulting quadrature coincides with the Gauss–Hermite quadrature. More generally, the three uni-
variate quadratures are guaranteed to have non-negative weights and, hence, can be used to construct a realizable delta-
function representation of the velocity distribution function. As shown in [29], the univariate quadratures offer optimal
and bounded estimates of the higher-order moments, while exactly reproducing the lower-order moments. In 3-D, the max-
imum number of velocity moments that can be exactly controlled with the n3-node tensor-product quadrature is ðn2 þ 3Þn,
as compared to 4n3 for a non-tensor-product quadrature [22,23]. Despite this significant reduction in the number of mo-
ments that can be controlled for a given n, the moment-inversion algorithm based on a tensor product is very robust and
computationally efficient, and thus well suited for use in a flow solver based on moment transport equations.

In order to investigate the properties of solutions to the kinetic equation found with the quadrature-based moment clo-
sure, we have used the Riemann shock problem with a linear (BGK) collision term. The resulting moment transport equation
of order c (Eq. (6)) is closed except for the moments of order cþ 1 in the spatial fluxes, which are closed using quadrature.
Thus, it is possible to examine directly how the number of nodes used in the quadrature method of moments affects the
quality of the closure for the spatial fluxes. As shown in [21], the quadrature-based moment method can be used for arbitrary
Mach and Knudsen numbers (i.e., the solutions remain realizable but not necessarily accurate). Of particular interest in this
work was how the accuracy of the solutions depends on n for relatively large Mach and Knudsen numbers. As noted in the
Introduction, the behavior of the quadrature-based moment method for low Mach and/or low Knudsen numbers will be
identical to the off-lattice Boltzmann [1] and gas-kinetic methods [64], respectively.

The simulation results for the Riemann shock problem over a large range of Mach and Knudsen numbers have led to the
following conclusions:

(1) The heat flux ðq1Þ predicted by the 8-node quadrature is incorrect. We attribute this problem to the fact that many of
the third-order moments are not included in 8-node quadrature. Indeed, the heat fluxes for 27- and 64-node quadr-
atures have the correct forms.

(2) For 8-node quadrature and sufficiently large Mach numbers the spatial fluxes are not well predicted, leading to
discontinuities in the lower-order moments (e.g., density, mean velocity). Such problems are never observed with
27- and 64-node quadrature, even at very large Mach numbers.

(3) For relatively low Knudsen numbers, the predictions of the 27- and 64-node quadratures are in good agreement. How-
ever, as the Knudsen number is increased, the results for the two quadratures differ significantly. Presumably, because
it controls more moments, the 64-node quadrature should be more accurate.

(4) At large (infinite) Knudsen number, the discrete nature of the quadrature-based closure for the spatial fluxes is clearly
observed. As discussed in [23], for infinite Knudsen number (collision-less particles) each velocity abscissas obeys a
separate pressure-less gas dynamics equation [5], which is known to produce delta shocks [6] and vacuum states
[11]. Because of the strong dependence of solutions to the collision-less kinetic equation on initial and boundary con-
ditions, it is unlikely that any moment method can provide an accurate solution for all cases. However, quadrature-
based moment methods can provide an ‘‘optimal” solution for a finite set of moments. For example, highly non-equi-
librium behavior such as jet crossing [16] can be accurately reproduced [13,39].

(5) For large Knudsen numbers (i.e., weakly collisional flows), we have observed negative weights in the moment-inver-
sion algorithm. It will thus be necessary to treat such cases by setting the offending weights to zero removing one or
more of the mixed moments from the linear system used to determine the weights. However, because the 1-D quadr-
atures always yield non-negative weights, we are guaranteed that it will always be possible to find a reduced linear
system with non-negative weights. Generally, in weakly collisional flows, the accuracy of the quadrature-based
moment solution degrades (due to the discrete representation of the spatial fluxes) well before negative weights
are observed.

We remind the reader that the Riemann shock problem does not require any special treatment to find the rotated central
moments used in the moment-inversion algorithm. In general, however, it will be necessary either to solve for the rotated
central moments directly or to compute them from the full set of central moments of order c ¼ 3n� 3. (For more details, see
[21] where the procedure for n ¼ 2 is described.)

In work to be reported elsewhere, we have shown that the quadrature-based moment method described here has (as
expected) for low-Mach-number Poiseuille and Couette flows the same dependence on Knudsen number as higher-order
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lattice Boltzmann methods [35]. We have also applied the algorithms described in this work to simulate granular flows far
from equilibrium and found good agreement with discrete particle simulations [26,33]. Finally, we reiterate that the quad-
rature-based moment method presented in this work can be applied to any kinetic equation that is closed in terms of the
velocity distribution function, including, for example, the full Boltzmann collision term [59], the Enskog-Boltzmann equation
describing moderately dense granular gases [10,28], the Williams spray equation [15,23,62], and the kinetic equation for
fluid-particle flows with finite Stokes number [16,21,54]. Thus, using the moment-inversion algorithm developed in this
work, it will be possible to systematically investigate the number of velocity moments needed to accurately capture flows
for any Knudsen, Mach and Stokes numbers. In conclusion, we note that the spatial accuracy of the numerical algorithm for
the moment transport equations can be improved by using higher-order finite-volume schemes for the spatial fluxes [40,60],
and for this we can make use of the previous work on higher-order methods for gas-kinetic schemes [47,48].

Acknowledgment

This work was supported by a Grant from the US National Science Foundation (CCF-0830214).

Appendix A. Product-difference algorithm

The product-difference (PD) algorithm was introduced by [29] as an efficient method to compute quadrature weights and
abscissas for univariate distribution functions on finite intervals. The method relies on the theory of canonical moments [17],
and the relationship between the canonical moments and the zeros of orthogonal polynomials [18,55]. Solving for the roots
directly from the moments is ill-conditioned, so instead the PD algorithm solves an eigenvalue problem for a (symmetric,
tridiagonal) Jacobi matrix constructed from the moments [52]. The abscissas are the eigenvalues and the weights are found
from the first components of the eigenvectors [29]. As long at the (canonical) moments are realizable, the weights will be
non-negative and the abscissas will lie in the interval on which the distribution is defined [17,55]. The PD algorithm de-
scribed in [45] requires a separate treatment for cases where the first-order moment is null [61] (which covers all of the
cases considered in this work). For completeness, we will thus provide explicit formulas for the Jacobi matrix up to n ¼ 4.

Let the normalized central moments be denoted by ð1; 0;m2; . . . ;m7Þ, and the elements of the Jacobi matrix by zði; jÞ. Up to
n ¼ 4, the unique components of the Jacobi matrix are
zð1;1Þ ¼ q1;

zð2;2Þ ¼ q3=q2; zð1;2Þ ¼ ffiffiffiffiffi
q2
p

;

zð3;3Þ ¼ q5=q4=q2; zð2;3Þ ¼ ffiffiffiffiffi
q4
p

=q2;

zð4;4Þ ¼ q7=q6=q4; zð3;4Þ ¼ ffiffiffiffiffiffiffiffiffiffi
q2q6
p

=q4;

ðA:1Þ
where the qi are defined in terms of the moments:
q1 ¼ 0;

q2 ¼ m2;

q3 ¼ m3;

q4 ¼ �m2
3 þ m4 �m2

2

� �
m2;

q5 ¼ m3
3 þ ð�2m4m3 þm5m2Þm2;

q6 ¼ �m3
4 þ 2m5m4 þ ð�m6 þm2

3Þm3
� �

m3 þ m4m6 �m2
5 � 3m4m2

3 þ ð2m5m3 þm2
4 �m6m2Þm2

� �
m2; ðA:2Þ

q7 ¼ �m4
4 þ ð3m5m2

4 þ ð�m2
5 � 2m6m4 þm7m3Þm3Þm3

� �
m3 þ �2m2

5 þ 2m6m4
� �

m4 þ ð2m6m5 � 2m4m7Þm3
� �

m3
�

þ m3
5 þ ð�2m6m5 þm4m7Þm4

�
þ �2m3

4 þ 4m5m4 þ �2m6 þm2
3

� �
m3

� �
m3

� �
m3þ 2m5m2

4 þ �4m2
5 þ ð2m7 � 4m4m3Þm3

� �
m3

�
þ 2m5m6 � 2m4m7 þ 3m2

4 þ 3m5m3
� �

m3
�

þð�2m6m3 � 2m5m4 þm7m2Þm2Þm2Þm2Þm2Þm2:
Note that q2; q4 and q6 will be non-negative for realizable moments, and will be zero only for degenerate distribution
functions composed of delta functions. For example, q2 ¼ 0 can be represented by one delta function (i.e., zero variance).
In most applications, these quantities will be positive.

For higher-order 1-D quadrature (i.e., n > 4), the Wheeler algorithm [61] described in [52] can be recommended. This
algorithm requires the modified moments mj, and the recurrence coefficients aj and bj for a chosen basis of orthogonal poly-
nomials pj. A convenient choice is aj ¼ 0; bj ¼ 0 and mj ¼ mj. The subroutine orthog in [52] takes as input
mi for i 2 ð0;1; . . . ;2n� 1Þ and ai; bi for i 2 ð0;1; . . . ;n� 1Þ;
and uses the Wheeler algorithm to compute the recurrence coefficients ai; bi for i 2 ð0;1; . . . ;n� 1Þ. Note that for realizable
moments, bi P 0. The recurrence coefficients are then used to define the Jacobi matrix:
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zði; iÞ ¼ ai�1 for i 2 ð1;2; . . . ;nÞ;

zði; iþ 1Þ ¼
ffiffiffiffi
bi

p
for i 2 ð1;2; . . . ;n� 1Þ;

zðiþ 1; iÞ ¼
ffiffiffiffi
bi

p
for i 2 ð1;2; . . . ;n� 1Þ:

ðA:3Þ
The n eigenvalues of the Jacobi matrix are the desired abscissas, and the first component of the corresponding eigenvector
wj yields the weight: qj ¼ m0w2

j . The algorithm gaucof in [52] can be used for this purpose. Note that by definition the
eigenvalues are real and the weights are non-negative. As discussed in [61], the Wheeler algorithm computes aj and bj to
machine accuracy for large n, thereby avoiding the ill-conditioning associated with a direct moment-inversion method. Note
that the Wheeler algorithm with standardized Gaussian moments will generate weights and abscissas equal to the Gauss–
Hermite quadrature. We have used this fact to verify our numerical implementation.
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